Largest BST subtree¶
Time: O(N); Space: O(H); medium
Given a binary tree, find the largest subtree which is a Binary Search Tree (BST), where largest means subtree with largest number of nodes in it.
Note:
A subtree must include all of its descendants.
Example 1:
Input: root = {TreeNode} [10,5,15,1,8,None,7]
10
/ \
5 15
/ \ \
1 8 7
Output: 3
Explanation:
The Largest BST Subtree in this case is the highlighted one.
The return value is the subtree’s size, which is 3.
Follow up:
Can you figure out ways to solve it with O(n) time complexity?
Hints:
You can recursively use algorithm similar to 98.
Validate Binary Search Tree at each node of the tree, which will result in O(NLogN) time complexity.
[6]:
class TreeNode(object):
def __init__(self, x):
self.val = x
self.left = None
self.right = None
[7]:
class Solution1(object):
"""
Time: O(N)
Space: O(H)
"""
def largestBSTSubtree(self, root):
"""
:type root: TreeNode
:rtype: int
"""
if root is None:
return 0
max_size = [1]
def largestBSTSubtreeHelper(root):
if root.left is None and root.right is None:
return 1, root.val, root.val
left_size, left_min, left_max = 0, root.val, root.val
if root.left is not None:
left_size, left_min, left_max = largestBSTSubtreeHelper(root.left)
right_size, right_min, right_max = 0, root.val, root.val
if root.right is not None:
right_size, right_min, right_max = largestBSTSubtreeHelper(root.right)
size = 0
if (root.left is None or left_size > 0) and \
(root.right is None or right_size > 0) and \
left_max <= root.val <= right_min:
size = 1 + left_size + right_size
max_size[0] = max(max_size[0], size)
return size, left_min, right_max
largestBSTSubtreeHelper(root)
return max_size[0]
[8]:
s = Solution1()
root = TreeNode(10)
root.left = TreeNode(5)
root.right = TreeNode(15)
root.left.left = TreeNode(1)
root.left.right = TreeNode(8)
root.right.right = TreeNode(7)
assert s.largestBSTSubtree(root) == 3